
 

Pointer time of check – time of use 

Pointer time of check – time of use (TocTou) code check belongs to a group of code checks, by default, 

focusing on untrusted interface functions. These functions represent program/library interface with the 

outside world and take user-provided input, requiring more stringent security measures to prevent 

exploitation. 

TocTou is a class of software security vulnerabilities caused by a race condition in checking user-provided 

data. As an example, we can take a look at the function in figure 1 which illustrates this vulnerability. Both 

check and process functions take user provided pointer as an argument and dereference it to access 

its value. An adversary could modify pointer value in between functions calls resulting in invalid data being 

passed to the process function. 

 

Figure 1 Example of TocTou vulnerability 

In general, for TocTou the order of check and use in two dereferences doesn’t matter as all combinations 

are potentially vulnerable. The general solution for this vulnerability would include dereferencing pointer 

once, storing data locally, and performing all checks and further processing on a local copy of data. 

Pointer time of check – time of use code check can help in identifying functions containing TocTou 

vulnerabilities. To set up code checker configuration, we need to: 

 set target context 

 set list of functions which dereference pointer arguments 

 adjust performance slider 

The button to open the configuration dialog for code check is available on Code check panel next to its 

name. 



 

 

Figure 2 Pointer time of check – time of use configuration 

In True Code, context serves as a way to logically group functions based on some characteristics (i.e. list 

of functions representing application interface). The procedure of creating/editing contexts is explained 

in more detail in the True Code manual. During the analysis of function, if code check encounters a case 

where a pointer is passed as an argument to a function that is not part codebase (for example library 

function) it relies on assumed dereference list. Assumed dereferences list, as the name implies, is a user-

settable list of functions for which code check assumes a pointer dereference if it gets passed to them as 

an argument. By default, this list includes standard C library functions for working with memory such as 

memcpy, memcmp, etc. The performance slider enables the user to choose between different presets of 

advanced settings. Advanced settings include: 

 maximum function call depth 

 symbolic execution limit 

 timeout 

The maximum function call depth sets a limit on how deep in the call stack, from the start function, pointer 

function arguments will be followed. The symbolic execution limit and timeout both serve as a way to 

limit the maximum runtime of the code checker per function. In general, lower values of advanced settings 

reduce processing time but as a tradeoff code check may not find certain vulnerabilities. 



 

Once the checker configuration has been set up, it can be run to analyze all pointer arguments of functions 

in a selected context. All reported findings will be available to the user as annotations through Annotation 

tab of True Code. Users can right-click on any annotation in the table and select ‘Show” to get a more 

detailed overview of the detected issue. It is important to note that Pointer time of check – time of use 

code check stops analysis of a function and reports detected TocTou finding as soon as one is encountered. 

For this reason, it is recommended to fix detected bugs and re-run analysis to check if the issue is fixed 

and if there were more previously unreported issues. 

An example of generated TocTou annotation is shown in figure 3. 

 

Figure 3 Example of Pointer time of check – time of use annotation 

 

 


